From: Schlosser, Paul [/O=EXCHANGELABS/OU=EXCHANGE ADMINISTRATIVE GROUP

(FYDIBOHF23SPDLT)/CN=RECIPIENTS/CN=121CF759D94E4F08AFDE0CEB646E711B-SCHLOSSER, PAUL)

Sent: 11/19/2019 4:10:25 PM

To: Cynthia Van Landingham [cvanlandingham@ramboll.com]

CC: Jerry Campbell [JCampbell@ramboll.com]; Harvey Clewell [HClewell@ramboll.com]; Robinan Gentry

[rgentry@ramboll.com]; Walsh, Patrick [patrick-walsh@denka-pe.com]; Thayer, Kris [/o=ExchangeLabs/ou=Exchange Administrative Group (FYDIBOHF23SPDLT)/cn=Recipients/cn=3ce4ae3f107749c6815f243260df98c3-Thayer, Kri];

Jones, Samantha [/o=ExchangeLabs/ou=Exchange Administrative Group

(FYDIBOHF23SPDLT)/cn=Recipients/cn=eac77 fe3b20c4667b8c534c90c15a830-Jones, Samantha]; Lavoie, Emma and the property of the

[/o=ExchangeLabs/ou=Exchange Administrative Group

(FYDIBOHF23SPDLT)/cn=Recipients/cn=86ac7844f12646c095e4e9093a941623-Lavoie, Emma]; Bahadori, Tina

[/o=ExchangeLabs/ou=Exchange Administrative Group

(FYDIBOHF23SPDLT)/cn=Recipients/cn=7da7967dcafb4c5bbc39c666fee31ec3-Bahadori, Tina]; Kirby, Kevin

[/o=ExchangeLabs/ou=Exchange Administrative Group

(FYDIBOHF23SPDLT)/cn=Recipients/cn=cbb65672f6f34545be460a66ff6fa969-Kirby, Kevin]; Vandenberg, John

[/o=ExchangeLabs/ou=Exchange Administrative Group

(FYDIBOHF23SPDLT)/cn=Recipients/cn=dcae 2b98a04540 fb8d099 f9d4dead690-Vandenberg, John]; Morozov, Viktor (FYDIBOHF23SPDLT)/cn=Recipients/cn=dcae 2b98a04540 fb8d099 f9d4dead690-Vandenberg, Viktor (FYDIBOHF25SPDLT)/cn=Recipients/cn=dcae 2b98a04540 fb8d090-Vandenberg, Viktor (FYDIBOHF25SPDLT)/cn=Recipients/cn=dcae 2b98a04540 fb8d090-Vandenberg, Viktor (FYDIBOHF25SPDLT)/cn=Recipients/cn=dcae 2b98a04540 fb8d090-Vandenb

[/o=ExchangeLabs/ou=Exchange Administrative Group

(FYDIBOHF23SPDLT)/cn=Recipients/cn=03cc9abb639c453fabc2bbb3e4617228-Morozov, Viktor]; Davis, Allen

[/o=ExchangeLabs/ou=Exchange Administrative Group

(FYDIBOHF23SPDLT)/cn=Recipients/cn=a8ecee8c29c54092b969e9547ea72596-Davis, Allen]; White, Paul

[/o=ExchangeLabs/ou=Exchange Administrative Group

(FYDIBOHF23SPDLT)/cn=Recipients/cn=4e179825823c44ebbb07a9704e1e5d16-White, Paul]; Hawkins, Belinda

[/o=ExchangeLabs/ou=Exchange Administrative Group

(FYDIBOHF23SPDLT)/cn=Recipients/cn=075561d171e845828ec67a945663a8e6-Hawkins, Belinda]

Subject: RE: Chloroprene PBPK: metabolic parameters / IVIVE calculations

Some more details on Medinsky et al. (1994):

- The experiments performed/reported are measurements of partition coefficients for butadiene and in vivo gas uptake studies. They did not measure or report microsomal protein fractions and the in vitro kinetics used were taken from Csanady et al. (1992).
- Csanady et al. (1992) report, "Mouse, rat and human liver microsomal concentrations were 11.6, 16.8 and 14.5 mg/g liver respectively," which both Medinsky et al. and the Ramboll authors conclude are too low, represent poor experimental recovery. I agree with the conclusion, given the large amount of contradicting data for rat and human at least.
- The description of the PBPK model methods in Medinsky is very brief, does not mention the MPPGL. It is stated in footnote "a" of Table II as, "Liver and lung microsomal concentrations used to extrapolate to in vivo were 35 and 20 mg/g tissue, respectively." No citation there.
- On p. 1337 in the Discussion, left column, there is a paragraph on the scaling.
 - They cite a paper by Kohn and Melnick that attempted to use the measured MPPGL from Csanady, and found that this under-predicted the measured rate of gas uptake.
 - The "numerous investigators" (4 citations, 2 for rabbit, 2 for human) was only to note that microsomal protein recovery can vary from 50% for the liver to 8-15% for the lung. So it's fine if those are from other species, appropriately makes the point, but 4 papers isn't exactly "numerous".
 - They then state, "The values that we used for liver [35 mg/g] was very similar to the 30 mg/g used by Johanson and Filser (13)."
 - o No specific reference for the lung MPPGL, but then...
 - "Thus, in order to successfully simulate in vivo behavior from in vitro experiments, information must be obtained on the actual amount of enzyme present in the intact tissue. It is likely that the amount of enzyme can depend on the nutrition state, age, strain... as well as a number of other factors. Simulating chemical behavior without direct measurement of this value leads to increased uncertainty in model predictions."

I have to switch gears right now, don't have time to go into Johanson and Filser. But based on this description it appears their MPPGL (and for lung) were selected to fit the model to the in vivo uptake data. My conjecture: A value of 35 for the liver successfully fits the rat data, where there is minimal lung metabolism. Adding 20 mg/g lung for the mouse gives the extra uptake needed to fit the mouse in vivo data, given 35 mg/g for the liver. (Fig 6 shows that for the rat, adding lung metabolism makes no difference, for the mouse it makes the difference between the simulating being above the data and fitting the data pretty well.)

So what Medinsky et al. (1994) seems to show is that the IVIVE required in vivo data to adjust/fit the MPPGL and MMGLU. Because butadiene and CP are both small VOCs, maybe these numbers from Medinsky are appropriate, but this is not a ringing endorsement for IVIVE. It is then more of a "parallelogram" than IVIVE: using the in-vitro to in-vivo relationship found for butadiene to obtain extrapolation parameters for CP.

Alternately, data where MPPGL for the mouse is measured/reported independent of in vivo PK data should be obtained. And the value of 20 mg/g for the lung seems doubly sketchy, since I think it's based on setting the mouse MPPGL to 35 (ie, equal to the value that works for rat butadiene data). Two of those "numerous" citations in Mediinsky are for rabbit lung, so maybe those are a reasonable source.

-Paul

From: Schlosser, Paul

Sent: Monday, November 18, 2019 4:42 PM

To: Cynthia Van Landingham < cvanlandingham@ramboll.com>

Cc: Jerry Campbell <JCampbell@ramboll.com>; Harvey Clewell <HClewell@ramboll.com>; Robinan Gentry

<rgentry@ramboll.com>; Walsh, Patrick <patrick-walsh@denka-pe.com>; Thayer, Kris <thayer.kris@epa.gov>; Jones,

Samantha < Jones. Samantha@epa.gov>; Lavoie, Emma < Lavoie. Emma@epa.gov>; Bahadori, Tina

<Bahadori.Tina@epa.gov>; Kirby, Kevin <KIRBY.KEVIN@EPA.GOV>; Vandenberg, John <Vandenberg.John@epa.gov>;

Morozov, Viktor < Morozov. Viktor@epa.gov>; Davis, Allen < Davis. Allen@epa.gov>; White, Paul < White. Paul@epa.gov>;

Hawkins, Belinda < Hawkins. Belinda@epa.gov>

Subject: RE: Chloroprene PBPK: metabolic parameters / IVIVE calculations

Thanks, kindly, Cynthia.

The other thing I'll need to unpack a bit more tomorrow, are the values/source for mouse liver and lung microsomal protein. Medinsky et al. (1994) did not measure the values they used, and as best I can tell the "numerous" sources they cite are only 4, from rabbits (2) and humans (2). I think the mouse values should be based on studies which actually measured microsomal content in that species. I may have missed the actual citations in Medinsky, but I only see the value in a figure legend, with no citation, and at one point in the discussion, with the 4 non-mouse citations. (Maybe those papers have mouse data in them too, just not in the title?)

-Paul

From: Cynthia Van Landingham < cvanlandingham@ramboll.com>

Sent: Monday, November 18, 2019 2:00 PM **To:** Schlosser, Paul <Schlosser.Paul@epa.gov>

Cc: Jerry Campbell <JCampbell@ramboll.com>; Harvey Clewell <HClewell@ramboll.com>; Robinan Gentry

<rgentry@ramboll.com>; Walsh, Patrick <patrick-walsh@denka-pe.com>; Thayer, Kris <thayer.kris@epa.gov>; Jones,

Samantha < Jones. Samantha@epa.gov>; Lavoie, Emma < Lavoie. Emma@epa.gov>; Bahadori, Tina

<Bahadori.Tina@epa.gov>; Kirby, Kevin <KIRBY.KEVIN@EPA.GOV>; Vandenberg, John <Vandenberg.John@epa.gov>;

Morozov, Viktor < Morozov. Viktor@epa.gov>; Davis, Allen < Davis. Allen@epa.gov>; White, Paul < White. Paul@epa.gov>;

Hawkins, Belinda < Hawkins. Belinda@epa.gov>

Subject: RE: Chloroprene PBPK: metabolic parameters / IVIVE calculations

Paul,

Attached is the paper that you requested in your e-mail below. I will get back to you as soon as I can with the answers to your other questions.

Cynthia

Cynthia Van Landingham

Senior Managing Consultant

D +1 (318) 3982091

M +1 (318) 6147920

From: Schlosser, Paul < Schlosser. Paul@epa.gov>

Sent: Monday, November 18, 2019 1:38 PM

To: Jerry Campbell < <u>JCampbell@ramboll.com</u>>; Harvey Clewell < <u>HClewell@ramboll.com</u>>; Robinan Gentry < rgentry@ramboll.com>

Cc: Walsh, Patrick <patrick-walsh@denka-pe.com>; Thayer, Kris <thayer.kris@epa.gov>; Jones, Samantha

<Jones.Samantha@epa.gov>; Lavoie, Emma <Lavoie.Emma@epa.gov>; Bahadori, Tina <Bahadori.Tina@epa.gov>; Kirby,

Kevin < KIRBY. KEVIN@EPA. GOV >; Vandenberg, John < Vandenberg. John@epa.gov >; Morozov, Viktor

<<u>Morozov.Viktor@epa.gov</u>>; Davis, Allen <<u>Davis.Allen@epa.gov</u>>; White, Paul <<u>White.Paul@epa.gov</u>>; Hawkins, Belinda <hawkins.Belinda@epa.gov>

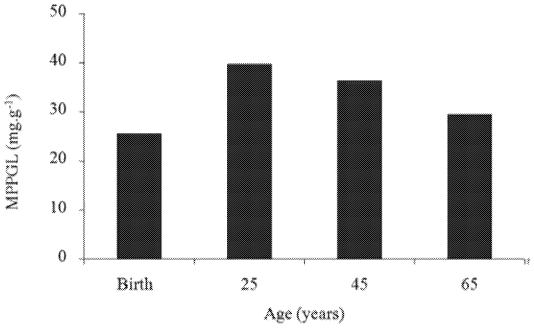
Subject: Chloroprene PBPK: metabolic parameters / IVIVE calculations

Greetings,

While I can't speak to the ultimate numerical significance, there are a number of discrepancies in and among the descriptions and calculations for IVIVE of metabolic parameters (i.e., between statements in the main report, p. 9, Supp Mat C, and the spreadsheet, Supp Mat D), and a couple of choices that I'm questioning. See below.

I would need to request a copy of Houston and Galetin (2008), which might take a few days, so it would help if Ramboll can send a copy.

I've highlighted the items that seem most significant, where corrections in the IVIVE spreadsheet appear to be needed or the justification (40 vs. 45 mg/g microsomal protein in rat liver) seems a bit weak. A copy of the spreadsheet where I've highlighted cells of concern is attached.


-Paul

Metabolic parameters and IVIVE extrapolation

The following are found in the spreadsheet, EPA Supp Mat D, in the "IVIVE" tab.

- **BW values for mice and rats, cells C22-C25**: these differ from the standard BW values listed in table S-1. For the sake of consistency, and since the tissues used to obtain microsomes were likely from juvenile/young adult animals, it might be better to use the lower, standard BW values from Table S-1. Alternately the Supp Mat C, Table 1 (which match the values in the Supp Mat D, IVIVE table), should be used in the model code for dose calculations in the absence of study-specific values.
- > Liver and lung microsome content, cells G22-G27 (liver) and cells H22-H26 (lung in all species):
 - Mouse liver: From Supp Mat C, value of 35 mg/g is from Medinsky et al. (1994), so reference in cell G27 is incorrect (says "rat value used for mouse")
 - Rat liver:
 - report p. 9 says 45 mg/g used for rats, not consistent with 40 in IVIVE spreadsheet (cells G24-25);
 - need to obtain Houston and Galetin (2008);
 - Supp Mat C says an average of values for rat from Medinsky et al. (1994) (sentence is confusing, "For mouse, 35 mg/g liver was reported by Medinsky et al. (1994) for both rat and mouse,") and 45 mg/g from Houston and Galetin, but it's not entirely clear why a cross-species average would be used for the rat, but not the mouse; if Medinsky et al. (1994) also measured 35 mg/g from rat liver, then an average may make sense...
 - In Barter et al. (2007), Figure 2, part A, there appear to be many papers reporting 45 mg/g for the rat, so the value of 45 mg/g may be better supported;
 - reference in cell 27 just cites Houston and Galetin (2008), not consistent with "40".
 - Human liver:
 - Text in main report, p. 9, says 40 mg/g, which matches the value listed in Supp Mat C;
 - But IVIVE cell G26 has 50 mg/g;

- Supp Mat C, "Based on their meta-analysis and consensus report of the human data (Barter et al., 2007), 40 mg/g liver is recommended for human adults for chloroprene IVIVE-PBPK modeling," so it would be less confusing if the main report and IVIVE cell G27 cited this reference, not Barter et al. (2008)
- From Barter et al. (2007): "Values of MPPGL were approximately 36 and 31% lower in newborn and elderly (80 years) individuals than those in a 25-year-old individual (typically the age of individuals used in clinical pharmacology studies). The use of a value of MPPGL of 40 mg g⁻¹, determined for a young adult, would be expected to result in an overprediction of clearance in very young or very old patients. Therefore, MPPGL values relevant to the age of the population in which predictions are being made should be used in IVIVE." Image below is from Barter et al. (2008). Should risk assessment be focused on young adults, or entire population; i.e., use more of a population-average value from this reference? The young-adult value of 40 mg/g likely will be most health-protective.
- But the statement in Supp Mat C appears to mis-represent the conclusions of Barter et al. (2007): it should be made clear that this value is the recommendation of the model authors, not the cited paper.

- Lung: value of 23 mg/g in cells H22-26 does match Himmelstein et al. (2004b), but text in the report says 20 mg/g, and this is the conclusion after some discussion in Supp Mat C. Hence it appears that the value in the IVIVE tab (used) should be 20 mg/g and the reference in cell H27 should be changed to Medinsky et al. (1994).
- In Vitro Values of KFLUC for female rat (cell V33) and male rat (cell V38): These cells have calculations which are not explained and do not take values from the in vitro metabolic results; e.g., "=1.2/(0.82*2)/1000" in cell V33, which should be just equal to Parameter_Summary cell I18.